Source code for loupe.util

import numpy as np
from numpy.lib.stride_tricks import as_strided

import loupe

[docs] def asarray(a, dtype=None, mask=None, requires_grad=False): """Convert the input to an array. Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. dtype : data-type, optional The desired data-type for the array. If not given, the type will be inferred from the supplied data object. mask : array_like, optional Mask applied to the array where a True value indicates that the corresponding element of the array is invalid. Mask must have the same shape as the array and contain entries that are castable to bool. If None (default), the array is not masked. requires_grad : bool, optional It True, gradients will be computed for this array. Default is False. Returns ------- out : :class:`array` Input data packaged as an :class:`array`. If input is already an :class:`array` or :class:`~loupe.core.Function`, the original input is returned. Examples -------- Convert a list into an array: .. code:: pycon >>> a = [1,2,3] >>> loupe.asarray(a) array([ 1.,2., 3.]) Existing arrays are not copied: .. code:: pycon >>> a = loupe.array([1,2,3]) >>> loupe.asarray(a) is a True """ if isinstance(a, (loupe.array, loupe.core.Function)): if any((dtype != None, mask != None, requires_grad != False)): raise ValueError('Unable to modify existing loupe array.') else: return a elif isinstance(a, (int, float, complex, list, tuple, np.ndarray)): return loupe.array(a, dtype=dtype, mask=mask, requires_grad=requires_grad) else: raise TypeError(f'Unsupported type. Cannot create array from \ {a.__class__.__name__}')
[docs] def zeros(shape, dtype=None, requires_grad=False): """Return a new array with values set to zeros. Parameters ---------- shape : int or tuple of ints Shape of the array dtype : data type, optional Desired data type for the array requires_grad : bool, optional It True, gradients will be computed for this array. Default is False. Returns ------- out : :class:`array` Array of zeros with the given shape and dtype. See Also -------- zeros_like : Return an array of zeros with shape and type of input. ones : Return a new array with values set to ones. """ return loupe.array(np.zeros(shape), dtype=dtype, requires_grad=requires_grad)
[docs] def zeros_like(a, dtype=None, requires_grad=False): """Return a new array of zeros with the same shape and type as a given array. """ return loupe.zeros(shape=a.shape, dtype=dtype, requires_grad=requires_grad)
[docs] def ones(shape, dtype=None, requires_grad=False): """Return a new array with values set to ones.""" return loupe.array(np.ones(shape), dtype=dtype, requires_grad=requires_grad)
[docs] def ones_like(a, dtype=None, requires_grad=False): """Return a new array of ones with the same shape and type as a given array. """ return loupe.ones(shape=a.shape, dtype=dtype, requires_grad=requires_grad)
[docs] def rand(low=0.0, high=1.0, size=None, dtype=None, requires_grad=False): """Return a new array with values drawn from a uniform distribution.""" return loupe.array(np.random.uniform(low=low, high=high, size=size), dtype=dtype, requires_grad=requires_grad)
[docs] def randn(loc=0.0, std=1.0, size=None, dtype=None, requires_grad=False): """Return a new array with values drawn from a normal distribution.""" return loupe.array(np.random.normal(loc=loc, scale=std, size=size), dtype=dtype, requires_grad=requires_grad)
[docs] def centroid(img): """Compute image centroid location. Parameters ---------- img : array_like Input array. Returns ------- centroid : tuple ``(x,y)`` centroid location. """ img = np.asarray(img) img = img/np.sum(img) nr, nc = img.shape yy, xx = np.mgrid[0:nr, 0:nc] x = np.dot(xx.ravel(), img.ravel()) y = np.dot(yy.ravel(), img.ravel()) return x, y
[docs] def shift(a, shift): """Shift an array via FFT. Shift an array by (row, column). The shifts may be non-integer as the shift operation is implemented by introducing a Fourier-domain tilt. If ``a`` is complex, the result will also be complex. Parameters ---------- a : array_like The input array. shift : (2,) sequence The shift specified as (row, column). Returns ------- shifted : ndarray The shifted input array. Example ------- .. code:: pycon >>> import loupe >>> import numpy as np >>> arr = np.zeros((3,3)) >>> arr[2,2] = 1 >>> arr array([[0., 0., 0.], [0., 0., 0.], [0., 0., 1.]]) >>> arr_shift = loupe.shift(arr, shift=(-1,-1)) >>> arr_shift array([[ 0.00000000e+00, -7.40148683e-17, -2.46716228e-17], [-1.16747372e-16, 1.00000000e+00, 2.14548192e-16], [-3.12823642e-17, 2.22044605e-16, -4.18468327e-17]]) """ a = np.asarray(a) dr, dc = shift R = dr * np.fft.fftfreq(a.shape[0]) C = dc * np.fft.fftfreq(a.shape[1]) RR, CC = np.meshgrid(R, C, indexing='ij') K = np.exp(-1j*2*np.pi*(RR+CC)) shifted = np.fft.ifft2(np.fft.fft2(a)*K) if np.any(np.iscomplex(a)): return shifted else: return shifted.real
[docs] def register(arr, ref, oversample, return_error=False): """Compute the subpixel image translation to register the input array to a reference array. The registration shift is computed in two steps: first a coarse estimate is computed from the FFT-based cross-correlation of the two input arrays. This estimate is then refined to subpixel accuracy by computing the upsampled DFT-based cross-correlation in a small neigborhood around the initial estimate. Parameters ---------- arr : array_like Array to register. ref : array_like Target array. oversample : float Oversampling factor for subpixel registration. Registration accuracy is 1/oversample. return_error : bool, optional If True, the noramlized RMS registration error is returned. Default is False. Returns ------- shift : tuple Translation in (row, col) that will register *arr* to *ref*. err : float Registration error References ---------- Guizar-Sicairos, Thurman, and Fienup, "Efficient subpixel image registration algorithms". Optics Letters 33, 156-158 (2008) See also -------- :func:`~loupe.shift` Example ------- .. code:: pycon >>> import loupe >>> import numpy as np >>> ref = np.zeros((3,3)) >>> ref[1,1] = 1 >>> arr = np.zeros((3,3)) >>> arr[2,2] = 1 >>> shift = loupe.register(arr, ref, oversample=2) >>> shift (-1.0, -1.0) """ F = np.fft.fft2(arr) G = np.fft.fft2(ref) xcorr = np.fft.fftshift(np.fft.ifft2(G*np.conj(F))) # find peak maxima = np.unravel_index(np.argmax(np.abs(xcorr)), xcorr.shape) peak = xcorr[maxima] # compute shifts center = np.array([np.fix(x/2) for x in arr.shape]) shift = maxima - center if oversample !=1: # now we can set up and perform the oversampled dft on an oversampled # 1.5 x 1.5 pixel region about the peak npix_dft = np.ceil(oversample*1.5) dft_shift = np.fix(npix_dft/2) rs = dft_shift - shift[0] * oversample cs = dft_shift - shift[1] * oversample # Compute DFT X = np.arange(arr.shape[1]) - np.floor(arr.shape[1]/2) Y = np.arange(arr.shape[0]) - np.floor(arr.shape[0]/2) U = np.arange(npix_dft) - cs V = np.arange(npix_dft) - rs E1 = np.exp(-2*np.pi*1j/(arr.shape[0]*oversample)*np.outer(V,Y)) E2 = np.exp(-2*np.pi*1j/(arr.shape[1]*oversample)*np.outer(X,U)) xcorr = np.dot(np.dot(E1,np.conj(np.fft.ifftshift(G*np.conj(F)))),E2) maxima_subpx = np.unravel_index(np.argmax(np.abs(xcorr)), xcorr.shape) peak = xcorr[maxima_subpx] # Combine subpixel peak coordinates with integer pixel peak coords maxima_subpx -= dft_shift shift[0] += maxima_subpx[0]/oversample shift[1] += maxima_subpx[1]/oversample shift = tuple(shift) # Compute normalized RMS error if return_error: arr_amp = np.sum(np.abs(F)**2) ref_amp = np.sum(np.abs(G)**2) err = 1-np.abs(peak)**2/(arr_amp*ref_amp) err = np.sqrt(np.abs(err)) return shift, err return shift
[docs] def medfix2(input, mask, kernel=(3,3)): """Fix masked entries in a 2-dimensional array via median filtering. Parameters ---------- input : array_like A 2-dimensional input array mask : array_like A 2-dimensional kernel : array_like, optional A scalar or list of length 2 specifying the filter window in each dimension. Elements of *kernel* should be odd. If *kernel* is a scalar, it is used for each dimension. Default is (3,3). Returns ------- out : ndarray An array the same size as input where the masked entries are replaced with median filtered values. """ # force a copy by calling array instead of asarray input = np.array(input, dtype=float) mask = np.asarray(mask, dtype=bool) kernel = np.asarray(kernel) if kernel.shape == (): kernel = np.repeat(kernel, 2) if np.any(kernel % 2 == 0): raise ValueError("Each element of kernel must be odd") input[mask] = np.nan pad_size = np.array((kernel-1)/2, dtype=int) input_pad = np.full((input.shape[0] + pad_size[0] * 2, input.shape[1] + pad_size[1] * 2), np.nan) slc = (slice(pad_size[0], pad_size[0] + input.shape[0]), slice(pad_size[1], pad_size[1] + input.shape[1])) input_pad[slc] = input input_pad = as_strided(input_pad, shape=(input_pad.shape[0], input_pad.shape[1], kernel[0], kernel[1]), strides=input_pad.strides + input_pad.strides) input_pad = input_pad.reshape((input_pad.shape[0], input_pad.shape[1], np.prod(kernel))) mask_idx = np.where(mask) input[mask_idx] = np.nanmedian(input_pad[mask_idx[0], mask_idx[1], :], axis=1) return input